国家队大数据的态度_国家在大数据方面相关的政策或文件
1.大数据时代,科技走到了宗教尽头
2.足球必发指数最精准的技巧
3.大数据具体是做什么?有哪些应用?
4.在大数据时代,数据拥有者的商业模式有哪些?
5.“国家队”数字货币插手移动支付,马云、马化腾始料未及,如何评价?
6.大数据的应用领域在不断拓宽
7.北京成立人民数据金融数据中心
8.国家队主力军排头兵是什么意思
大数据时代,科技走到了宗教尽头
大数据时代,科技走到了宗教尽头
这是一个人人都言“大数据”的时代,然“大数据”存在于何处?影响于何处?难免,普通大众被席卷而来的“大数据”之潮迷乱了眼睛,搅乱了思绪。正是在这样的时刻,笔者认为尤为重要的是保有敬畏之心与清醒的思维,认识到“大数据”的局限性。
渗透时刻,无处不在的大数据
大数据可能是时下最吸引眼球的话题之一。从通过鲜花与安全套销量比分析不同城市的浪漫指数到发现深处内陆的新疆人民反而比基尼销量第一,从为节能减排做贡献到德国国家队利用大数据技术搜集球员信息征战世界杯到根据敌方机场起降信号,一分钟内分析出起降批次,战斗机型号等细节,再到获得获第86届奥斯卡金像奖最佳原创剧本奖的《她》,剧本内主角和人工智能系统之间感情逐渐加深直到爱上彼此,大数据给人带来无尽遐想,带来无限精彩的可能。
就像马云所说的那样,人类已经从IT时代走向DT时代。阿里巴巴集团数据委员会长车品觉在他的著作《决战大数据》里面也强调了两个重要观点:其一,大数据彻底消除了“样本偏差”(sample bias)。“样本跟大数据不同。大数据相信全量数据,而非样本;是分析得出,而不是抽样获得”;其二,大数据时代的相关性分析可以创造以前无法想象的场景。极端情况下,线上数据的积累,可以形成个人的”线上人格”,影响乃至控制人的线下行为。
傲慢是罪,保持一颗敬畏之心
大数据前景如此美好,竟让我无言以对。然而,傲慢是罪。“智慧果”让人类拥有了智慧,但同时也让离开伊甸园的人类从此无法摆脱傲慢的原罪。从“通天塔”到在“地上建立天国”,失去敬畏之心的人类往往给自己造成巨大伤害。大数据时代,同样应该保持一颗敬畏之心,认识到以下三点。
一、样本偏差始终存在,大数据没有超越统计学
什么是样本偏差?这方面最精彩的例子来自二战。其简化版本是,英国皇家空军苦恼于德军凶猛的防空炮火,想通过加强飞机装甲降低战斗机损耗率。但受制于飞机载重,只能在部分部位加强装甲。为此,他们求助于一位统计学家。在仔细观察成功返回机场飞机上的着弹痕迹后,专家给出了出人意料的结论:在没有着弹痕迹的部位加装装甲。面对质疑,统计学家只回答了一句话。“那些部位着弹的飞机都坠落了”。可见,统计学永远是个手艺活,没有两把刷子是要害死人的。
本质上来说,统计学就是用部分推测整体,用过去预测未来的理论体系。其最大的弱点在于部分推测整体时,样本偏差会让结论失效。那么,在大数据时代,是否真的来到了天堂,没有样本偏差的困扰了?答案显然是否定的。从现象上来看,即使在大数据时代,数据与应用场景也会有严重割裂。拿情人节鲜花和安全套比率这个例子来说,基于“你懂得”的原因,很多安全套消费发生在线下,线上无法获取该数据。因为技术手段或商业模式本身的限制,线上系统能采集到的数据只是完整场景中的一部分,不是全部数据。再比如新疆人民比基尼销量第一的例子。数据分析人员如果不能意识到真实场景中,新疆的比基尼销售量主要集中线上(线下传统渠道销量很少或者基本没有?)但其它省份比基尼销售主要在线下(线上销量占比8%~10%)就会得出错误的结论。同时,在新疆,淘宝天猫的网上销量基本代表了真实的网上销量。但在北上广这些一线城市,京东的线上销量已经和淘宝天猫相当,只考虑阿里系的数据,会严重低估真实销量。
从理论上分析,数据与应用场景的割裂本质上就是样本偏差。因为技术或者利益的原因,大数据时代搜集的数据也不能完全覆盖应用场景的各个环节,所取得的数据仍然是部分,不是全部。最后,从哲学层面来说,即使以后技术有了长足的进步,解决数据与场景的割裂问题,同时也有了完美的商业模式可以让竞争对手乐意互相分享数据,样本偏差仍然会存在。其核心在于,人类虽然有能力认识客观世界的所有规律,但客观世界本身并不是静止的,而是在不断运动当中。过去的数据,一定不能体现客观世界未来的发展规律。“刻舟求剑”的理念不符合实际。从这个角度上来说,“黑天鹅”事件的本质就是样本偏差。技术再先进,商业模式再精妙,也不能解决这个问题。所以说,即使在大数据时代,人们还是应该有敬畏之心,在这个时代,科技确实游走到了宗教边缘。
二、大数据结论是统计学意义上的整体性结论,并不是针对个体
任何基于统计学的理论分析和结论都是整体性的。阿西莫夫在他的著作《基地》里完美的阐述了这一观点。哈利.谢顿以银河系里2000万星球上百亿亿居民为研究对象,成功创建了心理历史学,并以此成功预测了银河帝国会经历长达三万年的黑暗野蛮时期和银河第二帝国的出现。但无法用该理论预测个体。所以它无法预言变异人骡的出现。若非第二基地的存在,整个复兴计划险些失控。《失控》也描述了类似的现象。深海里的鱼群作为一个整体,行为规律非常容易预测。但单个个体行为毫无规律,难以预测。淘宝/天猫的“千人千面”是大数据时代的重要尝试。其核心基于大数据,为淘宝/天猫客户展现个性化搜索结果。该项目核心细节并不为外人所知,但基于理论分析,可以做出合理的推测。首先,淘宝/天猫搜集的数据一定不是所谓的“全量数据”,现有条件下,很多与顾客购买兴趣相关的核心数据无法被搜集。其次,即使模型准确率能达到99%,对于一个上亿规模的平台来说,也有近千万的客户会有比较差的用户体验。基于此,“千人千面”个性化程度必须做合理化约束,否则,理想越美好,现实就会越骨感。
三、相关性始终不是因果,这方面应用陷阱和机会一样多
相关性分析是数据分析利器,同时又是最容易引入问题的地方。相关并不是因果。统计数据显示,冰淇淋销量上升时,水中溺死人数会迅速上升,两者之间呈现极强的正相关。那么冰淇淋消费会引起人溺死吗?答案显然是否定的。只是天气炎热会同时增加冰淇淋消费和人们水上活动的几率。一个更有说服力的例子是某个时期的统计数据显示,白酒价格和牧师收入之间有极强的正相关。难道牧师群体们一个个都是“酒肉穿肠过,佛祖心中留”?答案也是否定的,其真实原因只是因为通货膨胀同时导致了白酒价格和牧师收入水平上涨。在大数据时代,相关与因果的混淆可能导致的问题会远超以往。大数据时代,数据极为充分,计算能力极强,可以发现以往无法发现的相关性。这是大数据时代让人兴奋的地方。但同时,相关性与因果性的辨别难度极大提升。一旦判断失误,会引起极大的问题。譬如说,目前阿里小贷引以为豪的信用判别模型与自动放款。假设目前信用模型相关性失效,“即通货膨胀率长期稳定,白酒价格和牧师收入不再强相关”,那通过现有模型筛选的主体的真实信用等级会有极大风险,后果不堪设想。以上分析纯粹基于理论层面,并不指向某个具体项目,但随着大数据技术的进步,辨别相关性与因果性的难度会越来越大,风险也会越来越高。
这个世界最让人理解的就是它是不可理解的。这个世界最让人难以理解的就是它又是可以理解的。大数据时代,我们需要有一颗敬畏之心。傲慢是罪。
以上是小编为大家分享的关于大数据时代,科技走到了宗教尽头的相关内容,更多信息可以关注环球青藤分享更多干货
足球必发指数最精准的技巧
一个最直观的因素是要看两个国家队之间的实力对决,其次还要根据往期的成绩以及在世界杯中的排名,包括在FIFA中的国家队排名?。这些因素都是影响影响足球指数最直观的因素。足球指数具体的指两队控球率。足球指数宏观的上而讲是足球比赛中每个国家队之间的数据变化;而从微观的角度而言也反映出了每一个国家队之间的发展。
首先,国家队之间的实力差距是最直观的因素,每一个国家队之间的实力不一样,而训练方式也不一样,所以可以参考FIFA中的国际排名做出一个大致的判断,从而决定究竟哪个国家赢得概率大一点。
其次,足球指数的变化因素指的是球队在具体现场中的表现,是否能为自己的国家增加分数,经过大数据的计算,如果a国家队在球赛中表现的越突出,那么,在数字上所反映出来的是输掉比赛的可能性比较低,那么在主场和客场比赛的过程中所预测出来的结果是完全不同的。
足球指数也可以作为一个平均两个国家队之间的一把尺子发布的指数,是要按照每个国家在赛场上的具体表现所进行的同时进球以及主客场的表现,也不是随机规划的。根据大数据的未来预测趋势。具体的足球指数也可以按照雷速体育的计算标准。
总之影响足球因素的因素也有很多种,但是以上两种是比较直观的而且指数还要受到足球发展空间以及足球市场,包括足球队员的影响。这些因素都是综合影响足球指数的具体因素。所以在分析的过程中要经过复杂的考虑,所以每个国家队之间具体的足球指数呈现出来都是要经过大数据的多重计算。
大数据具体是做什么?有哪些应用?
大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。
提到大数据,最常见的应用就是大数据分析,大数据分析的数据来源不仅是局限于企业内部的信息化系统,还包括各种外部系统、机器设备、传感器、数据库的数据,如:政府、银行、国计民生、行业产业、社交网站等数据,通过大数据分析技术及工具将海量数据进行统计汇总后,以图形图表的方式进行数据展现,实现数据的可视化,在此基础上结合机器学习算法,对数据进行深度挖掘,发掘数据的潜在价值。
应用部分,大数据不仅包括企业内部应用系统的数据分析,还包括与行业、产业的深度融合,大数据分析的应用场景具有行业性,不同行业所呈现的内容与分析维度各不相同,具体场景包括:互联网行业、政府行业、金融行业、传统企业中的地产、医疗、能源、制造、电信行业等等。
1. 互联网行业大数据的应用代表为电商、社交、网络检索领域,可以根据销售数据、客户行为(活跃度、商品偏好、购买率等)数据、交易数据、商品收藏数据、售后数据等、搜索数据刻画用户画像,根据客户的喜好为其推荐对应的产品。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。
在大数据时代,数据拥有者的商业模式有哪些?
在大数据成为趋势,成为国家战略的今天,如何最大限度发挥大数据的价值成为人们思考的问题。无论是对于互联网企业、电信运营商还是数量众多的初创企业而言,大数据的变现显得尤为重要。谁最先一步找到密码,谁就能够抢占市场,赢得发展。在探索大数据商业模式的同时,大数据正加速在各行各业的应用,大数据不仅为人们的购物、出行、交友提供了帮助,甚至还在高考这样重要的事件中发挥作用。
大数据产业具有无污染、生态友好、低投入高附加值特点,对于我国转变过去资源因素型经济增长方式、推进“互联网+”行动计划、实现国家制造业30年发展目标有战略意义。前几年,国内大数据产业讨论较多、落地较少,商业模式处于初探期,行业处于两种极端:一种是过热的浮躁带来了一定的泡沫和产业风险;一种是怀疑大数据只是炒作,依然坚持传统管理理念、经营模式。但是进入2015年之后,大数据产业告别了泡沫,进入更务实的发展阶段,从产业萌芽期进入了成长期。当前,如何将大数据变现成为业界探索的重要方向。
B2B大数据交易所
国内外均有企业在推动大数据交易。目前,我国正在探索“国家队”性质的B2B大数据交易所模式。
2014年2月20日,国内首个面向数据交易的产业组织—中关村大数据交易产业联盟成立,同日,中关村数海大数据交易平台启动,定位大数据的交易服务平台。2015年4月15日,贵阳大数据交易所正式挂牌运营并完成首批大数据交易。贵阳大数据交易所完成的首批数据交易卖方为深圳市腾讯计算机系统有限公司、广东省数字广东研究院,买方为京东云平台、中金数据系统有限公司。2015年5月26日,在2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会上,贵阳大数据交易所推出《2015年中国大数据交易白皮书》和《贵阳大数据交易所702公约》,为大数据交易所的性质、目的、交易标的、信息隐私保护等指明了方向,奠定了大数据金矿变现的产业基础。
咨询研究报告
国内咨询报告的数据大多来源于国家统计局等各部委的统计数据,由专业的研究员对数据加以分析、挖掘,找出各行业的定量特点进而得出定性结论,常见于“市场调研分析及发展咨询报告”,如“2015~2020年中国通信设备行业市场调研分析及发展咨询报告”、“2015~2020年中国手机行业销售状况分析及发展策略”、“2015年光纤市场分析报告”等,这些咨询报告面向社会销售,其实就是O2O的大数据交易模式。
各行各业的分析报告为行业内的大量企业提供了智力成果、企业运营和市场营销的数据参考,有利于市场优化供应链,避免产能过剩,维持市场稳定。这些都是以统计部门的结构化数据和非结构化数据为基础的专业研究,这就是传统的一对多的行业大数据商业模式。
数据挖掘云计算软件
云计算的出现为中小企业分析海量数据提供了廉价的解决方案,SaaS模式是云计算的最大魅力所在。云计算服务中SaaS软件可以提供数据挖掘、数据清洗的第三方软件和插件。
业内曾有专家指出,大数据=海量数据+分析软件+挖掘过程,通过强大的各有千秋的分析软件来提供多样性的数据挖掘服务就是其盈利模式。国内已经有大数据公司开发了这些架构在云端的大数据分析软件:它集统计分析、数据挖掘和商务智能于一体,用户只需要将数据导入该平台,就可以利用该平台提供的丰富算法和模型,进行数据处理、基础统计、高级统计、数据挖掘、数据制图和结果输出等。数据由系统统一进行管理,能够区分私有和公有数据,可以保证私有数据只供持有者使用,同时支持多样数据源接入,适合分析各行各业的数据,易学好用、操作界面简易直观,普通用户稍做了解即可使用,同时也适合高端用户自己建模进行二次开发。
大数据咨询分析服务
机构及企业规模越大其拥有的数据量就越大,但是很少有企业像大型互联网公司那样有自己的大数据分析团队,因此必然存在一些专业型的大数据咨询公司,这些公司提供基于管理咨询的大数据建模、大数据分析、商业模式转型、市场营销策划等,有了大数据作为依据,咨询公司的结论和咨询成果更加有说服力,这也是传统咨询公司的转型方向。比如某国外大型IT研究与顾问咨询公司的副总裁在公开场合曾表示,大数据能使贵州农业节省60%的投入,同时增加80%的产出。该公司能做出这样的论断当然是基于其对贵州农业、天气、土壤等数据的日积月累以及其建模分析能力。
政府决策咨询智库
党的十八届三中全会通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出,加强中国特色新型智库建设,建立健全决策咨询制度。这是中共中央文件首次提出“智库”概念。
近几年,一批以建设现代化智库为导向、以服务国家发展战略为目标的智库迅速成立,中国智库数量从2008年的全球第12位跃居当前第2位。大数据是智库的核心,没有了数据,智库的预测和分析将为无源之水。在海量信息甚至泛滥的情况下,智库要提升梳理、整合信息的能力必然需要依靠大数据分析。
研究认为,93%的行为是可以预测的,如果将事件数字化、公式化、模型化,其实多么复杂的事件都是有其可以预知的规律可循,事态的发展走向是极易被预测的。可见,大数据的应用将不断提高政府的决策效率和决策科学性。
自有平台大数据分析
随着大数据的价值被各行各业逐渐认可,拥有广大客户群的大中型企业也开始开发、建设自有平台来分析大数据,并嵌入到企业内部的ERP系统信息流,由数据来引导企业内部决策、运营、现金流管理、市场开拓等,起到了企业内部价值链增值的作用。
在分析1.0时代,数据仓库被视作分析的基础。2.0时代,公司主要依靠Hadoop集群和NoSQL数据库。3.0时代的新型“敏捷”分析方法和机器学习技术正在以更快的速度来提供分析结果。更多的企业将在其战略部门设置首席分析官,组织跨部门、跨学科、知识结构丰富、营销经验丰富的人员进行各种类型数据的混合分析。
大数据投资工具
证券市场行为、各类指数与投资者的分析、判断以及情绪都有很大关系。2002年诺贝尔经济学奖授予了行为经济学家卡尼曼和实验经济学家史密斯,行为经济学开始被主流经济学所接受,行为金融理论将心理学尤其是行为科学理论融入金融中。现实生活中拥有大量用户数据的互联网公司将其论坛、博客、新闻报道、文章、网民用户情绪、投资行为与股票行情对接,研究的是互联网的行为数据,关注热点及市场情绪,动态调整投资组合,开发出大数据投资工具,比如大数据类基金等。这些投资工具直接将大数据转化为投资理财产品。
定向采购线上交易平台
数据分析结果很多时候是其他行业的业务基础,国内目前对实体经济的电子商务化已经做到了B2C、C2C、B2B等,甚至目前O2O也越来越流行,但是对于数据这种虚拟商品而言,目前还没有具体的线上交易平台。比如服装制造企业针对某个省份的市场,需要该市场客户的身高、体重的中位数和平均数数据,那么医院体检部门、专业体检机构就是这些数据的供给方。通过获取这些数据,服装企业将可以开展精细化生产,以更低的成本生产出贴合市场需求的服装。假想一下,如果有这样一个“大数据定向采购平台”,就像淘宝购物一样,可以发起买方需求,也可以推出卖方产品,通过这样的模式,外加第三方支付平台,“数据分析结论”这种商品就会悄然而生,这种商品不占用物流资源、不污染环境、快速响应,但是却有“供”和“需”双方巨大的市场。而且通过这种平台可以保障基础数据安全,大数据定向采购服务平台交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。所有卖方、买方都要实名认证,建立诚信档案机制并与国家信用体系打通。
非营利性数据征信评价机构
在国家将公民信息保护纳入刑法范围之前,公民个人信息经常被明码标价公开出售,并且形成了一个“灰色产业”。为此,2009年2月28日通过的刑法修正案(七)中新增了出售、非法提供公民个人信息罪,非法获取公民个人信息罪。该法条中特指国家机关或者金融、电信、交通、教育、医疗等单位的工作人员,不得将公民个人信息出售或非法提供给他人。而公民的信息在各种考试中介机构、房产中介、钓鱼网站、网站论坛依然在出售,电话、骚扰电话、推销电话在增加运营商话务量的同时也在破坏整个社会的信用体系和公民的安全感。
虽然数据交易之前是交易所规定的经过数据清洗的数据,但是交易所员工从本质上是无法监控全国海量的数据的。数据清洗只是对不符合格式要求的数据进行清洗,主要有不完整的数据、错误的数据、重复的数据三大类。因此,建立非营利性数据征信评价机构是非常有必要的,将数据征信纳入企业及个人征信系统,作为全国征信系统的一部分,避免交易变成市场的正常行为。
除了征信评价机构之外,未来国家公共安全部门也许会成立数据安全局,纳入网络警察范畴,重点打击将侵犯企业商业秘密、公民隐私的基础数据进行数据贩卖的行为。
结语:
大数据已经从论坛串场、浮躁的观点逐步走向国家治理体系建设、营销管理、生产管理、证券市场等方面,其商业模式也多种多样。市场经验表明,存在买卖就存在商品经济,具体哪种商业模式占主流将由市场决定。而最终的事实将证明,大数据交易商品经济必然成为“互联网+”的重要组成部分。
“国家队”数字货币插手移动支付,马云、马化腾始料未及,如何评价?
银联推出的云闪付红包活动显示,本次年关活动云闪付APP准备了开门大吉红包、天天签到红包、邀请亲友红包、发起转帐红包四大新春红包,用户每日最高能得到2018元。
此前,支付宝和微信都撸起袖子准备在春节期间的红包大战中大干一场,如今具有国家队背景的银联加入,也让众多人士有了更多的期待。
云闪付是银联专为移动互联网打造的统一品牌。中国银联是中国人民银行批准设立的中国银行卡联合组织。
事实上,银联进入移动支付领域时来已久。作为?国家队?选手,中国银联早在2006年就曾推出一套基于金融IC卡芯片的移动支付方案。但电信运营商和金融业各自提出一套NFC标准,双方相持不下,直到2012年才确立了金融业系统的标准为国标。此后,中国银联逐渐成为NFC的主要推动者。
好事多磨。2017年,银联联合商业银行正式推出银联二维码支付,并携手产业各方共同发布统一App?云闪付?。据银联最新公布的数据显示,2017年全年,银联手机闪付交易笔数月环比增幅不断提速,随着?云闪付?APP的推出,2017年12月银联二维码交易笔数较6月大幅提升超4倍。
成绩单也确实让人眼前一亮。银联交易数据显示,2017年银联网络转接交易金额93.9万亿元,同比增长28.8%。
业内人士表示,如此飞速发展的成绩似乎也在宣告,移动支付上支付宝、微信互相牵制的局面即将打破,移动支付日后将呈现三足鼎立的局面。
充满想象力的潜力
公允地说,在最近几年的移动支付领域,支付宝、微信势头迅猛,双方都不遗余力地跑马圈地。但互联网行业的一个通用规则是,野蛮生长只适合初级阶段,而且稍不注意企业在行业中的地位就会发生变化。
显而易见的是,随着银联在移动支付方面的发展,此前移动支付的野蛮扩张模式将不再适用,甚至银联的不断发力也是改变目前移动支付格局的一支重要力量。
当然,这三者提供类似的移动支付服务,不过这三者之间还是存在比较显著的差异。而这种差异基本在各自的产品特点上就能体现出来。
微信支付的标志性服务是?红包?,用户可在社交微信群中向朋友派发红包,是微信社交沟通移动应用程序的产物。已登记银行账户信息的用户能够通过持续使用手机,享受支付账单、向商店付费等生活服务。
相比之下,支付宝则是随着服务的扩展而发展起来的,其旨在促进网上购物网站阿里巴巴的付款服务。支付宝已不仅仅是一项托管支付服务,消费者可在确认其收到商品或服务后向卖家付款。同样,支付宝也在将服务扩展至阿里巴巴网站之外其他交易,包括水电费账单之类的线下付款。
银联作为中国官方认可的信用卡和借记卡网络公司,于2017年5月推出二维码支付标准。目前支付宝和微信支付在该领域占据主导地位,但银联的进入势必将整个二维码支付的局面带动起来,随着银联自身技术突破和监管层面的配合,在二维码支付领域,银联的优势将逐步凸显。这个潜力应该对银联今后的估值产生重大推动作用。
国家队背景的巨大优势
微信、支付宝作为第三方支付,在对银行卡的使用与监管方面就注定了二者的限局限性。
作为非银行金融服务提供商,支付宝曾在很长时间内避免了监管限制,并能将其服务延伸到境外。然而2016年底,支付宝被要求关闭所有的境外金融账户,对其东南亚业务产生相当大的影响。
而微信在海外应用最多的还是其本身的社交属性。在移动支付上,微信支付已经建立了外部合作伙伴,来共同开发海外市场。在南非,微信支付已经推出了国际支付解决方案,用户现在可以使用微信钱包收发钱,也可以从自动取款机上提取现金。但是其合作的国家数量上也远不及银联的合作方。
截至2017年6月,银联网络遍布中国城乡,并已延伸至亚洲、欧洲、美洲、大洋洲、非洲等境外160个国家和地区。
银联对比其他两者来看,银联的庞大用户数也奠定了其未来的?一哥?地位。数据显示,到目前为止,中国银联卡发行累计超过 54 亿张,仅 2016 年银联卡交易量就超过 380 亿笔。
银联的关注点也更加侧重出国的持卡人。2015年,美国吸引了超过250万的中国游客,这些游客在当地共消费400多亿美元。通过在美国发展合作关系,银联已能够成功打入美国市场,进而增加海外市场份额。
银联曾表示,银联卡在美国受理网络正趋于完善。目前,美国几乎所有ATM都能用银联卡取现,80%以上的商家可刷银联信用卡支付。在纽约、夏威夷、旧金山、洛杉矶、奥兰多和芝加哥等地的知名购物中心和奥特莱斯商圈,银联卡受理覆盖率普遍超过90%
银联的国际化布局
银联在2004年开始迈出其国际化步伐。2012年年底,酝酿已久的银联国际有限(责任)公司(银联国际)在上海正式开业,作为中国银联子公司,将负责专营中国银联国际业务。
银联在国际化上的布局从目前来看,没有任何一款产品可以与之相比。银联如今已基本上实现了全球覆盖。
数据显示,银联卡境外受理网络已覆盖160多个国家和地区。港澳地区、蒙古、古巴、阿联酋已基本实现全面受理,东北亚地区80%商户可用银联卡,东南亚区域商户受理覆盖率超过70%,美国80%以上的商家能刷银联信用卡消费,欧洲半数可用银行卡的商户支持银联卡消费,澳大利亚九成ATM和75%商户也可以使用银联卡。
另有资料表明,目前境外有超过1000万家网上商户受理银联卡,并已在教育缴费、航空预订等领域逐渐形成优势。境外有2000多所学校支持银联卡在线缴纳学费,近40家国际航空公司的官网支持银联卡在线购票。
银联国际相关负责人表示,银联在线支付、银联手机闪付、银联二维码、银联钱包类产品等一系列创新产品,正迎来更加丰富的跨境应用场景。
事实也的确如此。2018年开年以来,银联国际与华为签署合作协议,双方就共同推动Huawei Pay全球化、加快境外落地达成合作,也被外界视为银联国际化布局的重要一步。
南非标准银行与银联国际在南非约翰内斯堡达成合作协议,后者将借助标准银行的资源在非洲市场深入推广银联卡支付服务,标准银行也由此成为南非首家或许发行银联卡资质的金融机构。
从银联的动作来看,银联的战略优势是其庞大的出境中国持卡账户,再加上天生的?国家队?优势,以及银联在移动支付的布局,未来谁忽视银联,谁只能后果自负了
大数据的应用领域在不断拓宽
大数据的应用领域在不断拓宽
1、数据已经成为可交易的重要资产
数据的价值在于能够产生业务价值,而产生业务价值的多少取决于数据带来的视野的宽度和深度,以及对明智决策的支持度。从这个角度将,在资源不限的理想情况下,越多的数据来源,越能够带来宽度和广度,从而得到越好的决策支持度。数据,毫无疑问已经成为了一种企业资产, 并且会成为越来越重要的资产,未来甚至可能进入资产负债表。
2015 年 4 月 15 日, 我国贵阳大数据交易所正式运营, 其交易的数据是基于底层数据,通过数据的清洗、分析、建模 、可视化后的结果, 大数据交易所本着以电子交易为主要形式,通过建立大叔局的网上交易系统,搭建交易平台。预计到 2020 年,大叔局交易所将形成日均 100 亿的数据交易金额, 发展到 1 万家与大数据有关的会员单位。
2. 云计算是大数据产业发展的助推器
云计算产业进入高速发展期。 云计算包括三个层次的服务:基础架构即服务( IaaS),平台即服务(PaaS)和软件即服务(SaaS)。来自 Oxford Economics 和 SAP 关于云计算采用的研究《The Cloud Grow Up》中提出, 69%的企业预计在未来三年内将会中度或者重度投资在云计算上,这意味着它们的核心业务功能将迁移到云上。 59%的企业认为他们使用了基于云计算的应用程序和平台系统,更好地管理和分析了数据,这反映了企业范围内进行数据分析和大数据计算日益增加的重要性。 Gartner 预测 2015 年全球云计算服务市场总收入将突破 1800 亿美元。 2015 年 2 月 , 国务院下发《关于促进云计算创新发展培育信息产业新业态的意见》提到:开展基于云计算的大数据应用示范,支持政府机构和企业创新大数据服务模式,政府部门要加大采购云计算服务的力度等一系列措施。云计算已经从概念走向实际应用, 已经进入高速发展期。
云计算降低了使用 IT 资源的门槛,为数据集中化创造了基础,极大的促进了大数据产业的发展。 云计算按需付费和资源共享的商业模式,大幅提高了 IT 基础设施的使用效率;IaaS 运营商不断降价,又极大满足中小企业对于技术基础设施的需求。未来企业将不用再购买服务器,直接购买终端,输送至数据中心,从而形成服务器集群产业链,满足了大数据存储和挖掘的需求。云计算中心基础设施的不断完善使得大型数据中心和 PaaS 类运行平台的趋于成熟,又为 SaaS 类应用业务市场的大规模启动创造了条件。 SaaS 应用的大规模使用降低了用户使用软件的成本,促进了企业信息化程度额提高,又进一步促进了数据集中化。
云端处理与移动互联网行业结合,将产生不计其数的交叉业务和个性化应用。而社交网络的广泛应用,又加速了信息的传播速度和范围,促进了数据的内生增长。物联网要求的海量存储和计算能力让廉价、高性能的云计算应用方案成为所有用户的自然选择。可以说,云计算的蓬勃发展,极大促进了移动互联网、社交网络和物联网的发展,使得更多数据被采集到云端,为大数据应用提供了数据基础;同时,云计算的高性能、低成本运算能力又为大数据分析提供了极佳的计算平台,极大的促进了大数据在各行业中的应用。 因此, 数据的爆炸式增长其背后的核心支撑是云计算产业的蓬勃发展。
3. 大数据的应用领域在不断拓宽
大数据实践包含多个维度, 按照行业划分,包括金融大数据、 医疗大数据、 交通大数据、运营商大数据、 互联网大数据、物流大数据等等, 每个行业根据其 IT 系统及互联网化的完善程度不同,其大数据发展的阶段各不相同。按照数据对象划分,包括互联网大数据、政府大数据、 企业大数据、 个人大数据, 目前,互联网大数据是已经开始得到有效利用的细分领域,而政府、企业和个人的大数据应用才刚刚开始, 是“互联网 +”背景下大数据应用的重要发展方向。
互联网大数据:?互联网上的数据多样、积累迅速, 包括用户行为数据、用户消费数据、用户 社交数据、 用户地理位臵数据等, 互联网企业是大数据领域的先驱, 各家互联网企业依托自身的数据优势,早已开始利用大数据技术尝试用户 行为分析、精准营销、产品优化、 信用记录分析等用途。
阿里巴巴是互联网企业中大数据应用的典范。 阿里巴巴旗下的淘宝最早于 2005 年开发“淘数据”,并在半年后成立专门的大数据团队,相继开发了自用的“无量神针”、“类目360”, 以及针对卖家的“数据魔方”、“黄金策”、“淘宝指数”、“聚石塔”等数据产品,为卖家提供增值服务, 探索盈利模式。 此后,阿里巴巴的大数据体系日益成熟, 确立了平台 、金融和数据的三大业务核心,三者相辅相成,目前的阿里巴巴金融帝国就是建立在其电商平台 +大数据之上的隐性巨人。 例如, 阿里依托电商数据积累推出阿里小贷和蚂蚁信用,本质在于通过大数据技术构建征信体系 , 为整个阿里体系金融业务的进一步拓展打下了充分的基础。
政府大数据:?政府是数据资源最丰富的部门之一,大量的优质数据资源集中在政府手中,各个政府部门掌握着构成社会基础的原始数据,例如金融数据、交通数据、医疗数据、旅游数据、电力数据、住房数据、海关数据、违法犯罪数据、教育数据、环保数据等等。目前,政府数据存在几方面的问题:第一,数据积累偏静态,没有做到动态更新,导致有些数据过于陈旧;第二,数据孤岛现象严重,没有做到数据开放和共享。倘若能将这些数据进行有效的管理和分析,其商业价值和社会价值都是不可估量的。
政府加大智慧城市建设,数据价值挖掘正当时。?目前,政府已经意识到数据的重要性,2012 年开始,政府就不断加大在智慧城市建设,包括智慧交通、智慧环保、智慧教育、智慧社区、 智能电网等各个与城市相关的细分领域。 2014 年 3 月,国务院印发的《国家新型城镇化规划 (2014-2020 年)》,明确要求推进智慧城市建设,统筹城市发展的物质资源、信息资源和智力资源利用,推动物联网、云计算、大数据等新一代信息技术创新应用。 2015 年 4 月 , 住建部公布第三批智慧城市试点城市,加上前两批,目前我国的智慧城市试点已经达到 297 个。 智慧城市建设将完善城市各个细分领域的信息化水平, 构建统一的数据平台,打破信息孤岛现象; 同时, 一些地方政府已经开始探索采用 PPP(Public-Private-Partnership) 的公私合营模式,逐渐开放部分数据, 让社会机构参与运营,挖掘数据价值。
以智慧交通为例, 通过信息化建设连接道路信息管理系统、交通信号系统、公共汽车系统、出租车系统、电子收费系统、 停车场系统等, 实现数据共享, 对于政府部门来说,通过实时挖掘为出行者和交通监管部门提供实时交通信息,有效缓解交通拥堵, 快速响应突发状况,为城市交通的良性运转提供科学的决策依据, 提高民生体验;对于参与企业来说, 可以在停车场、市民出行等领域提供增值服务,探索新商业模式。
企业大数据:在“互联网+” 时代,企业的互联网化将从传统的传播互联网化和销售互联网化, 走向供应链互联网化和经营逻辑互联网化, 运营模式已经开始发生巨大变化, 企业与供应商、 服务商、 渠道商、 客户 , 乃至终端用户 都可以通过信息技术建立密切的联系 。 如果说过去互联网的价值主要体现在与渠道和营销的整合上,那么这一次变革将是互联网与传统行业在价值链各个关键环节的深度融合。
一方面,对于供应链环节来说, 大数据可以直接应用于产品设计、 原材料采购、 产品制造、库存、物流、配送等各个供应链环节, 清晰地把握原材料采购量、 订单完成率、库存量及产品配送等情况, 优化供应链流程, 降低不必要的损耗。 另一方面,对于生产环节来说, 企业生产设备可以通过传感器和信息系统等实现机器与机器之间的相互连接,进而获取数据, 利用大数据技术进行存储、分析和可视化,最终得到“智能信息” 供决策者使用,调解生产过程以提高效率。 未来, 当信息技术发展到一定阶段,企业生产过程甚至可以根据消费者需求进行个性化定制, 实现柔性生产。
体育大数据:?例如体育数据分析师通过从 OPTA( Opta Sports 是一家总部位于英国伦敦的体育数据提供商)提供的 2010 年世界杯以来 22904 场正式比赛的数据中,研究了梅西和其他 16574 名足球运动员与足球相关的所有数据准确发现了梅西两个性: 1、 与巴萨其他队友的数字相比,梅西有关防守行为的数字相当地少,其他方面也能体现“他不去争抢势均力敌的高球”等缺点; 2、 与在巴萨时梅西的表现指为 0.262 相比, 在阿根廷国家队里只有 0.199, 体现了 梅西在两支球队中所起作用的差异。
个人大数据:个人信息往往保存在第三方手里, 例如个人用户在互联网上留存、 在政府部门登记在案等各类信息,此类信息实际上也是互联网、政府和企业用于分析用户 行为的基础。此外,随着可穿戴设备等新事物的兴起,个人信息的采集方式越来越多样化,数据积累 也在不断完善, 例如,可以通过可穿戴设备或植入芯片等感知技术来采集身体数据、 健康数据、地理位臵信息、运动数据、 社会关系数据、饮食数据等。 未来, 可以想象的应用场景是,个人用户可以将个人数据授权给第三方机构以实现特定用途, 例如,高血压患者可以将个人血压数据、 身体机能数据、饮食数据等授权给健康管理机构使用,由他们监控和使用这些数据,进而为用户制定有效的健康维护方案。
以上是小编为大家分享的关于大数据的应用领域在不断拓宽的相关内容,更多信息可以关注环球青藤分享更多干货
北京成立人民数据金融数据中心
导读11月19日,“人民启信”正式上线暨人民数据金融数据中心成立新闻发布会在人民日报社新媒体大厦举行,相关领域专业人士分别为大会致辞,对人民数据金融数据中心的建设发展提出了殷切希望,下面我们就来了解一下具体内容。
人民数据金融数据中心将发挥金融大数据的集聚和增值作用,促进普惠金融发展、防范化解金融风险、推动并构建金融业数据融合应用的新格局。同时,“人民启信”APP也正式上线。
疫情影响下,数字技术的应用价值更加凸显,社会数字化进程明显加速,金融科技的力量已引起了各方重视,在未来全球的经济复苏中,金融科技将发挥关键性作用。
专家表示,希望人民金融数据中心可以建立生态服务体系,以自身优势能力和资源,与监管机构、数据拥有方、场景拥有方开放合作,在数据联合治理和价值共享机制、产品研发和场景服务合作机制、市场合作机制方面一起探索,共同推动行业标准建立,更好服务实体经济。
作为新时代大数据领域中的“国家队”,人民数据以承建国家大数据灾备中心、中国卫星安全数据中心和国家离岸大数据中心等国家大数据项目为契机,以构建全方位的大数据运营生态为目标,打造安全、高效、开放、共享的国家级大数据平台,并致力于做好各级党政机关、央国企、民企等大数据的“存、管、用”工作,提供大数据存储、管理、交易、场景化解决方案。
据了解,本次新闻发布会主办方人民网·人民数据(国家大数据灾备中心)是人民日报、人民网旗下“党管数据”理论和实践的平台,可见,未来国家或更加关注金融数据的发展。
国家队主力军排头兵是什么意思
站在队伍最前面的战士。
排头兵指动作要领最规范的战士,可以做为其他人的示范,通常站在队伍的最前面。
排头兵就是指在队伍前面冲锋陷阵,打开局面,扫清障碍,率先提供前进路标的先行者,干部带头创先争优,就是要求广大组工干部要争第一、创一流,为组织工作争光添彩,争做排头兵。